The serine 31 residue of the B subunit of Shiga toxin 2 is essential for secretion in enterohemorrhagic Escherichia coli.
نویسندگان
چکیده
Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) include Shiga toxin 1 (Stx1) as well as Shiga toxin 2 (Stx2). Stx1 is cell associated, whereas Stx2 is localized to the culture supernatant. We have analyzed the secretion of Stx2 by generating histidine-tagged StxB (StxB-H). Although neither StxB1-H nor StxB2-H was secreted in StxB-H-overexpressed EHEC, StxB2-H-overexpressed EHEC showed inhibited Stx2 secretion. On the other hand, StxB1-H-overexpressed EHEC showed no alteration of Stx2 secretion. B-subunit chimeras of Stx1 and Stx2 were used to identify the specific residue of StxB2 that the Stx2 secretory system recognizes. Alteration of the serine 31 residue to an asparagine residue (S31N) in StxB2-H enabled the recovery of Stx2 secretion. On the other hand, alteration of the asparagine 32 residue to a serine residue (N32S) in StxB1-H caused the partial secretion of a point-mutated histidine-tagged B subunit in EHEC. Based on the evidence, it appeared possible that this residue might contain secretion-related information for Stx2 secretion. To investigate this hypothesis, we constructed an isogenic mutant EHEC (Stx1B subunit, N32S) strain and an isogenic mutant EHEC (Stx2B subunit, S31N) strain. Although the mutant Stx2 was cell associated in isogenic mutant EHEC, mutant Stx1 was not extracellular. However, when we used plasmids for the expression of the mutant holotoxins, the overexpressed mutant Stx1 was found in the supernatant fraction, and the overexpressed mutant Stx2 was found in the cell-associated fraction in mutant holotoxin gene-transformed EHEC. These results indicate that the serine 31 residue of the B subunit of Stx2 contains secretion-related information.
منابع مشابه
Shiga toxin 2 is specifically released from bacterial cells by two different mechanisms.
Shiga toxin 1 (Stx1) is located in the periplasmic fraction, while Stx2 is found in the extracellular fraction, suggesting that enterohemorrhagic Escherichia coli (EHEC) contains a specific Stx2 release system. Both stx(1) and stx(2) are found within the late operons of Stx-encoding phages. Stx2 production is greatly induced by mitomycin C, suggesting that stx(2) can transcribe from the late ph...
متن کاملSerine Protease EspP from Enterohemorrhagic Escherichia Coli Is Sufficient to Induce Shiga Toxin Macropinocytosis in Intestinal Epithelium
Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC at...
متن کاملFusion of Cholera toxin B subunit (ctxB) with Shigella dysenteriae type I toxin B subunit (stxB), Cloning and Expression that in E. coli
Background and Objective: Shiga toxin (STx) is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB) is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3). Cholera toxi...
متن کاملFusion of CtxB with StxB, Cloning and Expression of in Esherichia coli: A challenge for Improvement of Immune Response Against StxB
Cholera toxin B subunit (CtxB) is a homopantameric, nontoxic subunit of cholera toxin that is responsible for its binding to the cell and has been known as a mucosal adjuvant for vaccines that could increase homoral and mocusal immunity response. In this work, the CtxB gene was fused to the StxB gene from Shigella dysenteriae type I a vaccine antigen candidate against t...
متن کاملESCHERICHIA COLI HEAT-LABILE TOXIN B SUBUNIT: CONSTRUCTION AND EVALUATION OF PLASMIDS PROVIDING CONTROLLED HIGH LEVEL PRODUCTION OF THE PROTEIN
With the plasmid DNA from a clinical isolate of enterotoxigenic Escherichia coli (ETEC) H 10407 as template, PCR-mediated cloning of the sequence encoding the heat-labile toxin B subunit (L T -B) has been carried out. Then this sequence was recloned into the pTrc 99A and pET23a expression vectors to give the pJasmids pTRCLTB and pETLTB, respectively. After induction, the former plasmid provides...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 75 5 شماره
صفحات -
تاریخ انتشار 2007